Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2768, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553456

RESUMO

Contextual embeddings, derived from deep language models (DLMs), provide a continuous vectorial representation of language. This embedding space differs fundamentally from the symbolic representations posited by traditional psycholinguistics. We hypothesize that language areas in the human brain, similar to DLMs, rely on a continuous embedding space to represent language. To test this hypothesis, we densely record the neural activity patterns in the inferior frontal gyrus (IFG) of three participants using dense intracranial arrays while they listened to a 30-minute podcast. From these fine-grained spatiotemporal neural recordings, we derive a continuous vectorial representation for each word (i.e., a brain embedding) in each patient. Using stringent zero-shot mapping we demonstrate that brain embeddings in the IFG and the DLM contextual embedding space have common geometric patterns. The common geometric patterns allow us to predict the brain embedding in IFG of a given left-out word based solely on its geometrical relationship to other non-overlapping words in the podcast. Furthermore, we show that contextual embeddings capture the geometry of IFG embeddings better than static word embeddings. The continuous brain embedding space exposes a vector-based neural code for natural language processing in the human brain.


Assuntos
Encéfalo , Idioma , Humanos , Córtex Pré-Frontal , Processamento de Linguagem Natural
2.
Proc Natl Acad Sci U S A ; 121(12): e2309054121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466840

RESUMO

COVID-19 forced students to rely on online learning using multimedia tools, and multimedia learning continues to impact education beyond the pandemic. In this study, we combined behavioral, eye-tracking, and neuroimaging paradigms to identify multimedia learning processes and outcomes. College students viewed four video lectures including slides with either an onscreen human instructor, an animated instructor, or no onscreen instructor. Brain activity was recorded via fMRI, visual attention was recorded via eye-tracking, and learning outcome was assessed via post-tests. Onscreen presence of instructor, compared with no instructor presence, resulted in superior post-test performance, less visual attention on the slide, more synchronized eye movements during learning, and higher neural synchronization in cortical networks associated with socio-emotional processing and working memory. Individual variation in cognitive and socio-emotional abilities and intersubject neural synchronization revealed different levels of cognitive and socio-emotional processing in different learning conditions. The instructor-present condition evoked increased synchronization, likely reflecting extra processing demands in attentional control, working memory engagement, and socio-emotional processing. Although human instructors and animated instructors led to comparable learning outcomes, the effects were due to the dynamic interplay of information processing vs. attentional distraction. These findings reflect a benefit-cost trade-off where multimedia learning outcome is enhanced only when the cognitive benefits motivated by the social presence of onscreen instructor outweigh the cognitive costs brought about by concurrent attentional distraction unrelated to learning.


Assuntos
Aprendizagem , Multimídia , Humanos , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Estudantes
3.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-37873125

RESUMO

Storytelling-an ancient way for humans to share individual experiences with others-has been found to induce neural synchronization among listeners. In our exploration of the dynamic fluctuations in listener-listener (LL) coupling throughout stories, we uncover a significant correlation between LL and lag-speaker-listener (lag-SL) couplings over time. Using the analogy of neural pattern (dis)similarity as distances between participants, we term this phenomenon the "herding effect": like a shepherd guiding a group of sheep, the more closely listeners follow the speaker's prior brain activity patterns (higher lag-SL similarity), the more tightly they cluster together (higher LL similarity). This herding effect is particularly pronounced in brain regions where neural synchronization among listeners tracks with behavioral ratings of narrative engagement, highlighting the mediating role of narrative content in the observed multi-brain neural coupling dynamics. By integrating LL and SL neural couplings, this study illustrates how unfolding stories shape a dynamic multi-brain functional network and how the configuration of this network may be associated with moment-by-moment efficacy of communication.

4.
Elife ; 122023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994909

RESUMO

Participant-specific, functionally defined brain areas are usually mapped with functional localizers and estimated by making contrasts between responses to single categories of input. Naturalistic stimuli engage multiple brain systems in parallel, provide more ecologically plausible estimates of real-world statistics, and are friendly to special populations. The current study shows that cortical functional topographies in individual participants can be estimated with high fidelity from naturalistic stimuli. Importantly, we demonstrate that robust, individualized estimates can be obtained even when participants watched different movies, were scanned with different parameters/scanners, and were sampled from different institutes across the world. Our results create a foundation for future studies that allow researchers to estimate a broad range of functional topographies based on naturalistic movies and a normative database, making it possible to integrate high-level cognitive functions across datasets from laboratories worldwide.


Assuntos
Academias e Institutos , Filmes Cinematográficos , Humanos , Encéfalo , Cognição , Bases de Dados Factuais
5.
Proc Natl Acad Sci U S A ; 120(43): e2304085120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37847731

RESUMO

Deep convolutional neural networks (DCNNs) trained for face identification can rival and even exceed human-level performance. The ways in which the internal face representations in DCNNs relate to human cognitive representations and brain activity are not well understood. Nearly all previous studies focused on static face image processing with rapid display times and ignored the processing of naturalistic, dynamic information. To address this gap, we developed the largest naturalistic dynamic face stimulus set in human neuroimaging research (700+ naturalistic video clips of unfamiliar faces). We used this naturalistic dataset to compare representational geometries estimated from DCNNs, behavioral responses, and brain responses. We found that DCNN representational geometries were consistent across architectures, cognitive representational geometries were consistent across raters in a behavioral arrangement task, and neural representational geometries in face areas were consistent across brains. Representational geometries in late, fully connected DCNN layers, which are optimized for individuation, were much more weakly correlated with cognitive and neural geometries than were geometries in late-intermediate layers. The late-intermediate face-DCNN layers successfully matched cognitive representational geometries, as measured with a behavioral arrangement task that primarily reflected categorical attributes, and correlated with neural representational geometries in known face-selective topographies. Our study suggests that current DCNNs successfully capture neural cognitive processes for categorical attributes of faces but less accurately capture individuation and dynamic features.


Assuntos
Reconhecimento Facial , Humanos , Reconhecimento Facial/fisiologia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem
6.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425747

RESUMO

Effective communication hinges on a mutual understanding of word meaning in different contexts. The embedding space learned by large language models can serve as an explicit model of the shared, context-rich meaning space humans use to communicate their thoughts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We demonstrate that the linguistic embedding space can capture the linguistic content of word-by-word neural alignment between speaker and listener. Linguistic content emerged in the speaker's brain before word articulation, and the same linguistic content rapidly reemerged in the listener's brain after word articulation. These findings establish a computational framework to study how human brains transmit their thoughts to one another in real-world contexts.

7.
Neuroimage ; 270: 119957, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822251

RESUMO

Effective influence management during advice-giving requires individuals to express confidence in the advice properly and switch timely between the 'competitive' strategy and the 'defensive' strategy. However, how advisers switch between these two strategies, and whether and why there exist individual differences during this process remain elusive. We used an advice-giving game that manipulated incentive contexts (Incentivized/Non-Incentivized) to induce the adviser's confidence expression strategy switching and measured the brain activities of adviser and advisee concurrently using functional near-infrared spectroscopy (fNIRS). Behaviorally, we observed individual differences in strategy switching. Some advisers applied the 'defensive' strategy when incentivized and the 'competitive' strategy when not incentivized, while others applied the 'competitive' strategy when incentivized and the 'defensive' strategy when not incentivized. This effect was mediated by the adviser's perceived stress in each condition and was reflected by the frequencies of advice-taking in the advisees. Neurally, brain activation in the dorsolateral prefrontal cortex (DLPFC) supported strategy switching, as well as interpersonal neural synchronization (INS) in the temporoparietal junction (TPJ) that supported influence management. This two-in-one process, i.e., confidence expression strategy switching and the corresponding influence management, was linked and modulated by the strength of DLPFC-TPJ functional connectivity in the adviser. We further developed a descriptive model that contributed to understanding the adviser's strategy switching during influence management.


Assuntos
Encéfalo , Motivação , Humanos , Processos Mentais , Mapeamento Encefálico/métodos , Córtex Pré-Frontal/fisiologia
8.
Proc Natl Acad Sci U S A ; 119(51): e2209307119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508677

RESUMO

When listening to spoken narratives, we must integrate information over multiple, concurrent timescales, building up from words to sentences to paragraphs to a coherent narrative. Recent evidence suggests that the brain relies on a chain of hierarchically organized areas with increasing temporal receptive windows to process naturalistic narratives. We hypothesized that the structure of this cortical processing hierarchy should result in an observable sequence of response lags between networks comprising the hierarchy during narrative comprehension. This study uses functional MRI to estimate the response lags between functional networks during narrative comprehension. We use intersubject cross-correlation analysis to capture network connectivity driven by the shared stimulus. We found a fixed temporal sequence of response lags-on the scale of several seconds-starting in early auditory areas, followed by language areas, the attention network, and lastly the default mode network. This gradient is consistent across eight distinct stories but absent in data acquired during rest or using a scrambled story stimulus, supporting our hypothesis that narrative construction gives rise to internetwork lags. Finally, we build a simple computational model for the neural dynamics underlying the construction of nested narrative features. Our simulations illustrate how the gradual accumulation of information within the boundaries of nested linguistic events, accompanied by increased activity at each level of the processing hierarchy, can give rise to the observed lag gradient.


Assuntos
Mapeamento Encefálico , Percepção da Fala , Percepção da Fala/fisiologia , Compreensão/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética
9.
Neuroimage Rep ; 2(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36081469

RESUMO

We explored the potential of using real-time fMRI (rt-fMRI) neurofeedback training to bias interpretations of naturalistic narrative stimuli. Participants were randomly assigned to one of two possible conditions, each corresponding to a different interpretation of an ambiguous spoken story. While participants listened to the story in the scanner, neurofeedback was used to reward neural activity corresponding to the assigned interpretation. After scanning, final interpretations were assessed. While neurofeedback did not change story interpretations on average, participants with higher levels of decoding accuracy during the neurofeedback procedure were more likely to adopt the assigned interpretation; additional control conditions are needed to establish the role of individualized feedback in driving this result. While naturalistic stimuli introduce a unique set of challenges in providing effective and individualized neurofeedback, we believe that this technique holds promise for individualized cognitive therapy.

10.
Nat Neurosci ; 25(3): 369-380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260860

RESUMO

Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.


Assuntos
Idioma , Linguística , Encéfalo/fisiologia , Humanos
11.
J Cogn Neurosci ; 34(4): 699-714, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35015874

RESUMO

Recent fMRI studies of event segmentation have found that default mode regions represent high-level event structure during movie watching. In these regions, neural patterns are relatively stable during events and shift at event boundaries. Music, like narratives, contains hierarchical event structure (e.g., sections are composed of phrases). Here, we tested the hypothesis that brain activity patterns in default mode regions reflect the high-level event structure of music. We used fMRI to record brain activity from 25 participants (male and female) as they listened to a continuous playlist of 16 musical excerpts and additionally collected annotations for these excerpts by asking a separate group of participants to mark when meaningful changes occurred in each one. We then identified temporal boundaries between stable patterns of brain activity using a hidden Markov model and compared the location of the model boundaries to the location of the human annotations. We identified multiple brain regions with significant matches to the observer-identified boundaries, including auditory cortex, medial prefrontal cortex, parietal cortex, and angular gyrus. From these results, we conclude that both higher-order and sensory areas contain information relating to the high-level event structure of music. Moreover, the higher-order areas in this study overlap with areas found in previous studies of event perception in movies and audio narratives, including regions in the default mode network.


Assuntos
Córtex Auditivo , Música , Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
12.
Soc Cogn Affect Neurosci ; 17(4): 367-376, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34450637

RESUMO

Human communication is remarkably versatile, enabling teachers to share highly abstracted and novel information with their students. What neural processes enable such transfer of information across brains during naturalistic teaching and learning? Here, a teacher was scanned in functional magnetic resonance imaging while giving an oral lecture with slides on a scientific topic followed by a review lecture. Students were then scanned while watching either the intact Lecture and Review (N = 20) or a temporally scrambled version of the lecture (N = 20). Using intersubject correlation, we observed widespread Teacher-Student neural coupling spanning sensory cortex and language regions along the superior temporal sulcus as well as higher-level regions including posterior medial cortex (PMC), superior parietal lobule, and dorsolateral and dorsomedial prefrontal cortex. Teacher-student alignment in higher-level areas was not observed when learning was disrupted by temporally scrambling the lecture. Moreover, teacher-student coupling in PMC was significantly correlated with learning: the more closely the student's brain mirrored the teacher's brain, the more the student improved their learning score. Together, these results suggest that the alignment of neural responses between teacher and students may reflect effective communication of complex information across brains in classroom settings.


Assuntos
Aprendizagem , Estudantes , Comunicação , Humanos , Aprendizagem/fisiologia
13.
Neuroimage ; 245: 118580, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740792

RESUMO

A key problem in functional magnetic resonance imaging (fMRI) is to estimate spatial activity patterns from noisy high-dimensional signals. Spatial smoothing provides one approach to regularizing such estimates. However, standard smoothing methods ignore the fact that correlations in neural activity may fall off at different rates in different brain areas, or exhibit discontinuities across anatomical or functional boundaries. Moreover, such methods do not exploit the fact that widely separated brain regions may exhibit strong correlations due to bilateral symmetry or the network organization of brain regions. To capture this non-stationary spatial correlation structure, we introduce the brain kernel, a continuous covariance function for whole-brain activity patterns. We define the brain kernel in terms of a continuous nonlinear mapping from 3D brain coordinates to a latent embedding space, parametrized with a Gaussian process (GP). The brain kernel specifies the prior covariance between voxels as a function of the distance between their locations in embedding space. The GP mapping warps the brain nonlinearly so that highly correlated voxels are close together in latent space, and uncorrelated voxels are far apart. We estimate the brain kernel using resting-state fMRI data, and we develop an exact, scalable inference method based on block coordinate descent to overcome the challenges of high dimensionality (10-100K voxels). Finally, we illustrate the brain kernel's usefulness with applications to brain decoding and factor analysis with multiple task-based fMRI datasets.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Humanos , Imageamento Tridimensional
14.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34750155

RESUMO

Our lives revolve around sharing emotional stories (i.e., happy and sad stories) with other people. Such emotional communication enhances the similarity of story comprehension and neural across speaker-listener pairs. The theory of Emotions as Social Information Model (EASI) suggests that such emotional communication may influence interpersonal closeness. However, few studies have examined speaker-listener interpersonal brain synchronization (IBS) during emotional communication and whether it is associated with meaningful aspects of the speaker-listener interpersonal relationship. Here, one speaker watched emotional videos and communicated the content of the videos to 32 people as listeners (happy/sad/neutral group). Both speaker and listeners' neural activities were recorded using EEG. After listening, we assessed the interpersonal closeness between the speaker and listeners. Compared with the sad group, sharing happy stories showed a better recall quality and a higher rating of interpersonal closeness. The happy group showed higher IBS in the frontal cortex and left temporoparietal cortex than the sad group. The relationship between frontal IBS and interpersonal closeness was moderated by sharing happy/sad stories. Exploratory analysis using support vector regression (SVR) showed that the IBS could also predict the ratings of interpersonal closeness. These results suggest that frontal IBS could serve as an indicator of whether sharing emotional stories facilitate interpersonal closeness. These findings improve our understanding of emotional communication among individuals that guides behaviors during interpersonal interactions.


Assuntos
Encéfalo , Emoções , Mapeamento Encefálico , Felicidade , Humanos , Relações Interpessoais
15.
Sci Data ; 8(1): 250, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584100

RESUMO

The "Narratives" collection aggregates a variety of functional MRI datasets collected while human subjects listened to naturalistic spoken stories. The current release includes 345 subjects, 891 functional scans, and 27 diverse stories of varying duration totaling ~4.6 hours of unique stimuli (~43,000 words). This data collection is well-suited for naturalistic neuroimaging analysis, and is intended to serve as a benchmark for models of language and narrative comprehension. We provide standardized MRI data accompanied by rich metadata, preprocessed versions of the data ready for immediate use, and the spoken story stimuli with time-stamped phoneme- and word-level transcripts. All code and data are publicly available with full provenance in keeping with current best practices in transparent and reproducible neuroimaging.


Assuntos
Compreensão , Idioma , Imageamento por Ressonância Magnética , Adolescente , Adulto , Mapeamento Encefálico , Processamento Eletrônico de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Narração , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161276

RESUMO

The attention schema theory posits a specific relationship between subjective awareness and attention, in which awareness is the control model that the brain uses to aid in the endogenous control of attention. In previous experiments, we developed a behavioral paradigm in human subjects to manipulate awareness and attention. The paradigm involved a visual cue that could be used to guide attention to a target stimulus. In task 1, subjects were aware of the cue, but not aware that it provided information about the target. The cue measurably drew exogenous attention to itself. In addition, implicitly, the subjects' endogenous attention mechanism used the cue to help shift attention to the target. In task 2, subjects were no longer aware of the cue. The cue still measurably drew exogenous attention to itself, yet without awareness of the cue, the subjects' endogenous control mechanism was no longer able to use the cue to control attention. Thus, the control of attention depended on awareness. Here, we tested the two tasks while scanning brain activity in human volunteers. We predicted that the right temporoparietal junction (TPJ) would be active in relation to the process in which awareness helps control attention. This prediction was confirmed. The right TPJ was active in relation to the effect of the cue on attention in task 1; it was not measurably active in task 2. The difference was significant. In our interpretation, the right TPJ is involved in an interaction in which awareness permits the control of attention.


Assuntos
Atenção/fisiologia , Conscientização/fisiologia , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Comportamento , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
17.
Neuron ; 109(11): 1769-1775, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33932337

RESUMO

Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress.


Assuntos
Comunicação , Internet , Neurociências/organização & administração , Congressos como Assunto , Guias de Prática Clínica como Assunto
18.
Neuroimage ; 233: 117975, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33762217

RESUMO

Shared information content is represented across brains in idiosyncratic functional topographies. Hyperalignment addresses these idiosyncrasies by using neural responses to project individuals' brain data into a common model space while maintaining the geometric relationships between distinct patterns of activity or connectivity. The dimensions of this common model capture functional profiles that are shared across individuals such as cortical response profiles collected during a common time-locked stimulus presentation (e.g. movie viewing) or functional connectivity profiles. Hyperalignment can use either response-based or connectivity-based input data to derive transformations that project individuals' neural data from anatomical space into the common model space. Previously, only response or connectivity profiles were used in the derivation of these transformations. In this study, we developed a new hyperalignment algorithm, hybrid hyperalignment, that derives transformations based on both response-based and connectivity-based information. We used three different movie-viewing fMRI datasets to test the performance of our new algorithm. Hybrid hyperalignment derives a single common model space that aligns response-based information as well as or better than response hyperalignment while simultaneously aligning connectivity-based information better than connectivity hyperalignment. These results suggest that a single common information space can encode both shared cortical response and functional connectivity profiles across individuals.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Filmes Cinematográficos , Rede Nervosa/diagnóstico por imagem , Adulto , Córtex Cerebral/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Estimulação Luminosa/métodos
19.
Apert Neuro ; 1(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-35939268

RESUMO

Functional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source, free Python package that provides computationally optimized solutions to key problems in advanced fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correlation (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of representational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic factor analysis (TFA), inverted encoding models (IEMs), an fMRI data simulator that uses noise characteristics from real data (fmrisim), and some emerging methods. These techniques have been optimized to leverage the efficiencies of high-performance compute (HPC) clusters, and the same code can be se amlessly transferred from a laptop to a cluster. For each of the aforementioned techniques, we describe the data analysis problem that the technique is meant to solve and how it solves that problem; we also include an example Jupyter notebook for each technique and an annotated bibliography of papers that have used and/or described that technique. In addition to the sections describing various analysis techniques in BrainIAK, we have included sections describing the future applications of BrainIAK to real-time fMRI, tutorials that we have developed and shared online to facilitate learning the techniques in BrainIAK, computational innovations in BrainIAK, and how to contribute to BrainIAK. We hope that this manuscript helps readers to understand how BrainIAK might be useful in their research.

20.
Neuroimage ; 222: 117254, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32800992

RESUMO

Naturalistic experimental paradigms in neuroimaging arose from a pressure to test the validity of models we derive from highly-controlled experiments in real-world contexts. In many cases, however, such efforts led to the realization that models developed under particular experimental manipulations failed to capture much variance outside the context of that manipulation. The critique of non-naturalistic experiments is not a recent development; it echoes a persistent and subversive thread in the history of modern psychology. The brain has evolved to guide behavior in a multidimensional world with many interacting variables. The assumption that artificially decoupling and manipulating these variables will lead to a satisfactory understanding of the brain may be untenable. We develop an argument for the primacy of naturalistic paradigms, and point to recent developments in machine learning as an example of the transformative power of relinquishing control. Naturalistic paradigms should not be deployed as an afterthought if we hope to build models of brain and behavior that extend beyond the laboratory into the real world.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Neurociência Cognitiva , Aprendizado de Máquina , Humanos , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA